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Abstract—The main idea in this paper is to implement a dis-
tributed primal-dual interior-point algorithm for loosely coupled
Quadratic Programming problems. We implement this in Julia
and show how can we exploit parallelism in order to increase
the computational speed. We investigate the performance of the
algorithm on a Model Predictive Control problem.

Index Terms—Distributed optimization; Primal-dual interior-
point method; Julia; Model predictive control; Parallelization

I. INTRODUCTION

The study of distributed optimization methods has become
important due to some issues and challenges that arise with
centralized optimization methods. In particular, centralized
optimization methods are difficult to use for the following
two types of problems. The first type is big size problems
with enormous number of decision variables while the com-
putational unit is limited in terms of power and memory. The
second type is problems which cannot be described in a cen-
tralized manner. This can be the case when the problem data
is stored locally or when there is a requirement on respecting
the privacy of data. Distributed optimization methods can be
used in order to address these challenges. They are typically
based on either first order methods where gradients of the
objective and constraint functions are used, or second order
methods where both gradients and hessians of the objective
and constraint functions are used [9]. The effectiveness of
these algorithms differs from each other in terms of sensitivity
to the scaling of the problem, the local computational cost and
the number of iterations for convergence. One drawback of
first order methods is that they normally need many iterations
to converge to an accurate solution, and this is one of the
reasons why there is a great interest in second order methods
which have better convergence properties. Some of the works
which fall into the class of second order methods are presented
in [1], [7], [10], [12], [13], [15]. In [7], the authors present an
algorithm for loosely coupled convex problems which is based
on primal-dual interior-point method where the Alternating di-
rection method of multipliers (ADMM) is used for calculating
the search directions distributedly. The algorithm presented in
[1] is a primal-dual interior-point method based distributed
algorithm for solving coupled problems with chordal sparsity
which relies on an exact search direction computation unlike
the ADMM method. In [10], the authors present a distributed

Newton-type algorithm for Network Utility Maximization
problems. In the proposed algorithm, they use an iterative
scheme in order to compute the primal and dual updates for
the Newton step in a decentralized manner. The authors then
analyze the convergence properties of the proposed algorithm
in [11]. In [12], the authors propose an interior-point and
Lagrangian dual decomposition based algorithm in order to
solve large-scale separable convex problems. In [13], [14],
the authors present a parallel structure exploiting interior-point
algorithm for convex quadratic programming problems with a
so-called nested block structure. In [15], the authors present a
parallel algorithm for solving the Newton step in both interior-
point and active-set methods when applied to Model Predictive
Control (MPC) problem.

Distributed optimization methods have a variety of ap-
plications in different fields such as control, electric power
systems, estimation, communication systems and economics.
One application is MPC where an optimization problem needs
to be solved repeatedly. In [2], the authors explore chordal-
ity for MPC problems and show how the banded structure
stemming from an MPC problem can be exploited in order
to find a computational graph for the distributed primal-dual
algorithm which enables efficient parallel computations. In [8],
a method is introduced for parallel computation of the Riccati
recursion which in turn is used to solve constrained finite-
time optimal control problems in parallel. Other applications
are, localization problems for sensor networks [17] and the
problem of optimal power flow and/or optimal frequency
control and/or optimal voltage control in the field of electric
power systems [9].

There has been enormous interest in the Julia programming
language in the scientific community in recent years because
of some of its distinguished features in numerical computation.
Julia is a high-level dynamic programming language for nu-
merical computing just like Python, Mathematica, MATLAB,
etc. The main factor, however, which makes Julia distinguished
is the fact that it is designed with the purpose of performance
in mind, so that it is comparable to programming languages
like C and Fortran. Thus, it is not only fast due to its just-
in-time (JIT) compiler, but also it is easy-to-use as is MAT-
LAB or Python. The language achieves this goal by taking
advantage of a number of features like Multiple dispatch,
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Metaprogramming for code generation, and an expressive type
system [3]. One feature, however, that we are particularly
interested in is the distributed parallel execution option in
Julia, which provides a multiprocessing environment to run
a program on multiple processors with separate memory
domains simultaneously.

Motivated by this feature in Julia, the idea in this paper is to
implement the distributed primal-dual interior-point algorithm
in [1] in such a way that we can simultaneously run the
algorithm on different processors. Hence we expect to speed
up the algorithm run-time, compared to the case where we run
the algorithm on a single processor.

The rest of the paper is organized as follows. In Section II
we present a simple example in order to clarify the general
idea behind the algorithm. In Section III we introduce the
type of problems that we consider in the paper. We describe
the general idea in [1] briefly in Section IV. In Section V
we discuss some technicalities associated with the Julia code.
In Section VI we test the implemented algorithm on an MPC
problem and discuss different scenarios. Finally, we give some
conclusions in Section VII.

II. SIMPLE EXAMPLE

Consider the following coupled optimization problem1:

min
x1,x2,x3,x4

F1(x1)+F2(x1, x2)+F3(x1, x3)+F4(x3, x4) (1)

where

F1(x1) =
1

2
xT1Q1x1

Fi(xn, xm) =
1

2

[
xn
xm

]T
Qi

[
xn
xm

]
, i = 2, 3, 4.

and Qis are symmetric matrices. One way of solving this
problem is to solve

min
x1

{F1(x1) + min
x2

F2(x1, x2)+min
x3

{F3(x1, x3)+

min
x4

F4(x3, x4)}} (2)

which can be interpreted as follows. Assume that F1, F2, F3

and F4 are assigned to four different computational nodes as
illustrated in Figure 1. Let us also take Node 1 as the root
node of the computational graph. Now, in order to solve the
problem in (2), in the first step, Node 4 needs to solve its
associated subproblem (F4) with respect to the variable which
is not present in Node 3 (x4) and then send the computed
optimal cost function which is a function of x3, to Node 3.
Node 3 is referred to as parent of Node 4. The exchanged
function among nodes is referred to as a message. In the
second step, Node 3 first adds the received message from
Node 4 to its associated subproblem (F3) and then carries out
the same procedure as Node 4, that is, optimizing with respect

1Part of the text is used in an extended abstract which has been submitted
to the local Swedish Control Meeting/Reglermotet 2018.

to the variable which is not present in the parent node and then
sending the corresponding message to the parent node. In the
third step, Node 2 carries out the same procedure as well.
It is worth pointing that the third step can be performed in
parallel with the first and second steps. Likewise, in the fourth
step, Node 1, which is referred to as the root node, first adds
the messages sent from its child nodes (nodes 2 and 3) into
its corresponding subproblem, and then solves the obtained
problem with respect to x1. This process is referred to as an
upwards pass through the computational graph. Node 1, after
finding the optimal x1, sends it back to its child nodes, so that
they can find the optimal x2, x3 and x4, accordingly. This
process, in turn, is referred to as a downward pass through
the computational graph. Therefore, after one upward and
downward pass through the computational graph, the optimal
solution is obtained.

As an example for an exchanged message between nodes,
let us consider again Node 2. The subproblem to be solved
for this node is

min
x2

1

2

[
x1
x2

]T
Q2

[
x1
x2

]
(3)

For this, first we partition Q2 so that Q2 =

[
R2 S2

ST
2 T2

]
. The

solution will then be:

x2 = −T−1
2 ST

2 x1

and therefore the message to be sent to Node 1 is obtained by
substituting x2 into the cost function, that is

m21(x1) =
1

2
xT1 (R2 − S2T

−1
2 ST

2 )x1

As mentioned earlier, Node 2 can work in parallel with
nodes 3 and 4. Now let us consider a case where nodes 1 and 2
and nodes 3 and 4 are defined in two different processors. Let
us also define the following recursive function

function opt_cost = upwardpass(Node)
if Node has a child
for all children
cost = cost + upwardpass(child)
end for
end if
optimize cost
return cost
end

which performs the upward pass stage, on both processors. In
particular, when the function is called with the input argument
Node, first it investigates if Node has a child and if so, then
for all children of Node, it adds the corresponding message
to its subproblem. After that it optimizes its subproblem with
respect to the variables which does not share with its parent
Node and then returns it. Now in order to take advantage
of parallelism, one can proceeds as follows. Node 1 asks
its child which lives in another processor (Node 3), to start
performing the upward pass phase, and right after that it
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Fig. 1. Computational graph for the example in 2

performs the upward pass phase on its child which lives in
the same processor as itself.

III. PROBLEM FORMULATION

The type of problem that we consider in this paper is a
loosely coupled Quadratic Program (QP) formulated as

minimize
x

N∑
i=1

1

2
xTHix+ fTi x

subject to Aix+ bi ≤ 0, i = 1, 2, . . . , N

Aeqix+ beqi = 0, i = 1, 2, . . . , N

(4)

where x is an n-dimensions column vector, Hi are n × n
sparse symmetric matrices and fi, Ai, bi, Aeqi and beqi are
matrices with proper dimensions. Ai and Aeqi are sparse as
well. Here ≤ denotes component-wise inequality. We assume
that the problem is sufficiently sparse. Next we show how to
find an optimal solution to this problem using a distributed
primal-dual interior-point algorithm.

IV. METHOD

The distributed primal-dual interior-point algorithm in [1]
which is a second-order optimization method, solves convex
optimization problems with inherent coupling structure. The
general idea in that paper is as follows. First a so-called Spar-
sity graph of the problem which express the coupling structure
within the problem is defined. This graph is used in order
to compute a so-called chordal embedding of the problem
which is needed to define the clique tree of the problem.
The obtained tree is then used as the computational graph for
the algorithm. Once the computational graph of the problem
is found, different terms of the optimization problem are
assigned to nodes of the computational graph using a specific
rule. The primal-dual search directions are then computed by
performing message-passing upwards and downwards through
the computational graph at each iteration. The corresponding
step size and the termination criterion at each iteration are
also computed by going upwards and downwards through the
computational graph. For details regarding the algorithm, see
[1]. As it is reported in the paper, one of the main advantages

of the algorithm over first order methods is its convergence
within a finite number of iterations.

V. JULIA IMPLEMENTATION

The code for the algorithm is available at the GitHub repos-
itory [5]. Next we briefly address some technicalities of the
distributed primal-dual interior-point method implementation
in Julia. A node in the computational graph is implemented
as a Composite Type2 in Julia which comprises information
regarding the processor in which it is defined, the child nodes
together with the processors in which they are defined, the
parent node and also information regarding the indices of
variables assigned to the node and the data matrices. From
now on we denote the defined Composite Type by Node.

Concerning the different stages of the presented distributed
primal-dual interior-point algorithm in [1], a number of re-
cursive functions are defined on all processors which are
referred to as ”workers” in Julia. In particular, there are
functions for calculating the search direction which is carried
out by an upward and downward pass over the computational
graph at each iteration; one function implements the upward
pass stage and one implements the downward pass stage.
Also there are functions for step size calculation and also
a number of functions for checking whether the algorithm
should be terminated or the perturbation parameter should be
updated [1].

All functions take a Node as the input argument. The output
of the functions are obviously different, however they can be
interpreted as a message from a child Node to its parent Node
or vise versa. For example, calling the upward pass function in
the search direction calculation step with Node N, will output
a data matrix which represents a quadratic function for the
parent of Node N.

As mentioned, the functions are recursive and in general,
they work as follows. Whenever a function is called with a
Node argument, say N, it first investigates if there exist any
child Node of N which is defined in any other processor, and
if so then for all those child Nodes, the same function is
invoked from the corresponding processor with the provided
corresponding child Node of N as the input argument. For
invoking a function from another processor, the @spawnat3

Macro is used. Once the functions are invoked from the
proper processors, the calling function continues performing
the remaining tasks instantly on child Nodes of N which are
defined on the same processor, in a recursive manner, and at
the end it fetches messages from the functions running on
the other processes as soon as their computations are finished.
This is how we benefit from parallelism in Julia.

VI. NUMERICAL EXPERIMENTS

One application of the QP problem is the optimization
problem that is solved at each sample in linear MPC. This
problem can be cast in the form

2For details, see https://docs.julialang.org/en/latest/manual/types/
3For details, see https://docs.julialang.org/en/latest/manual/parallel-

computing/#Distributed-Memory-Parallelism-1
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Fig. 2. Computational graph for the problem in (5). In the first setup we
only use one processor (the top figure) whereas in the second setup we make
use of a number of processors such that each parallel branch performs on a
separate processor (the bottom figure).

min
u

1

2

N−1∑
k=0

[
xk
uk

]T
Q

[
xk
uk

]
+

1

2
xTNSxN (5)

s.t. xk+1 = Axk +Buk, x0 = x̄

Cxk +Duk ≤ ek

where u = (u0, u1, . . . , uN−1) is the optimization variable,
xk is the state vector and A, B, C, D, Q, S, x̄ and ek are
given [16].

In order to solve this problem using the distributed interior-
point algorithm in [1], a computational graph is needed. A
simple computational graph which follows from the banded
structure of the problem, is a graph with a chain of nodes. This,
in fact, is the well-known backward dynamic programming
formulation [2]. With this graph, however, we cannot benefit
from parallelism since the computations in the nodes should
be carried out sequentially. The type of computational graphs
which we are interested in, are the ones with a number of
parallel branches, so that we can take advantage of parallelism.
To this end, we use the approach proposed in [2], in which
we can define computational graphs with arbitrary number of
branches for the problem in (5). For details, see [2]. The idea

in that paper is similar to what is presented in [8]. The length
of each branch is roughly the time horizon N divided by the
number of parallel branches.

For the problem in (5), we generate 20 random linear
systems using the drss function in MATLAB together with
two inequality constraints such that x and u have dimen-
sions 5 and 3, respectively. We discard unstable systems and
systems for which the condition number of the Controllability
Gramian is greater than 100, in order to exclude the systems
which are difficult to control, and then we consider different
time horizons (N ), starting from 50 up to 4000. The weight
matrices Q and S are also generated randomly. We run the
algorithm on a Linux computational server with 24 cores
and clock frequency of 3.07 GHz. The parameters α and
β for the step size calculation are chosen to be 0.01 and
0.7, respectively, see [1] and [6] for details. The algorithm is
terminated when the surrogate duality gap [1] is less than 10−5

and, primal and dual variables are feasible within a tolerance
of 10−5. The initial iterates for dual variables λ(0) and v(0) are
set to 1, and for primal variable x(0) is chosen such that it is
feasible with respect to the inequality constraints. The number
of iterations required for convergence ranges from 6 to 8. In
the worst case, the algorithm converges after 10 iterations.
It is often observed that for convergence, big size problems,
which are the ones with large time horizons, require more
iterations than small size problems, which are the ones with
short time horizons. Next we compare the computational time
for different cases using various number of processors.

A. Scenario 1

Here we run the algorithm for different computational
graphs with 2, 4, 8 and 16 parallel branches in two separate
setups. As illustrated in Figure 2, in the first setup we only
use one processor (the top figure) whereas in the second
setup we make use of a number of processors such that each
parallel branch performs on a separate processor (the bottom
figure). Therefore, for example, in the second setup for a
computational graph with 16 parallel branches we use 16
CPUs. The average total computational time for different time
horizons is illustrated in Figure 3. Note that the initialization
phase where we define the problem is not considered in
the recorded computational time. As can be observed, the
computational time is smaller when we make use of multiple
processors except for the case with short time horizon and
several number of processors, in particular, the case with
N = 50 and 16 processors. This is expected because the
communication overhead dominates the computations.

B. Scenario 2

Here we compare the speed-up factor for the computational
graphs with 4, 8 and 16 parallel branches with respect to the
case with 2 parallel branches, when we use one processor for
each parallel branch. The results are illustrated in Figure 4. As
can be seen, for big size problems as we increase the number
of parallel branches in the computational graph and assign a
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Fig. 3. The average total computational time for cases with 2, 4, 8 and 16 parallel branches over 20 random examples using two setups. In the first setup,
one processor is used for the whole computational graph whereas in the second setup, one processor is used for each parallel branch.

Fig. 4. Speed-up factor for the computational graphs with 4, 8 and 16 parallel
branches with respect to the computational graph with 2 parallel branches,
over 20 random examples. One processor is used for each parallel branch.

separate processor for each branch, we get a decrease of run-
time. In the ideal case, we would expect to get a speed-up
factor of 2, as we double up the number of processors in use.
However this does not happen in practice. One reason is that
the linear algebra operations that we use in Julia are ”implicitly
parallelized”, since the Basic Linear-Algebra Building-Blocks
(BLAS) which is underlying the default library for linear
algebra operations in Julia (LAPCK), is multithreaded, [3].
Therefore, two kind of parallelizations happen at the same time

as we run the program: 1. Implicit parallelization imposed by
the programming language, 2. Parallelization imposed by the
algorithm. This, in turn, slows down the algorithm compared
to the ideal case. For small size problems, however, we obtain
larger run-time as we increase the number of processors in use.
This happens because the communication overhead for small
size problems is considerable, which is not the case for big
size problems where the computations on processors dominate
over the communication overhead.

C. Scenario 3

In the implemented code which is used for scenar-
ios 1 and 2, all the information required for the algorithm is
stored locally in the nodes. However, because of the coupling
structure in (4), one variable which can be defined as a global
variable and be shared between nodes, is the optimization
variable, x and the corresponding search direction, ∆x. For
this purpose, the Shared Array4 type can be used in Julia.
Here we compare the impact of two types of implementations,
one with a distributed x and ∆x, and the other with a global
and shared x and ∆x. The speed-up factor for the case with
distributed x and ∆x with respect to the case with shared
x and ∆x is illustrated in Figure 5. As we see, for small
size problems with a few number of processors, although
the difference between two cases is not very significant, it
is reasonable to use shared variables. However, for big size
problems it is obvious from the figure that using distributed
and local variables accelerates the algorithm.

4For details, see https://docs.julialang.org/en/latest/manual/parallel-
computing/#Distributed-Memory-Parallelism-1
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Fig. 5. Speed-up factor for the case with distributed x and ∆x with respect to the case with shared x and ∆x, over 20 random examples. One processor is
used for each parallel branch.

VII. CONCLUSION

We implemented a distributed primal-dual interior-point
algorithm for loosely coupled Quadratic Programming prob-
lems in Julia. We discussed how we can take advantage of
parallelism in order to accelerate the execution time of the
algorithm. We evaluated the algorithm on an MPC problem.
For large scale problems we benefit from parallelism just as
in [8].
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